
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20

Download by: [China University of Geosciences] Date: 18 April 2016, At: 00:41

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

Simulating urban growth in a metropolitan area
based on weighted urban flows by using web
search engine

Jinyao Lin & Xia Li

To cite this article: Jinyao Lin & Xia Li (2015) Simulating urban growth in a metropolitan
area based on weighted urban flows by using web search engine, International Journal of
Geographical Information Science, 29:10, 1721-1736, DOI: 10.1080/13658816.2015.1034721

To link to this article:  http://dx.doi.org/10.1080/13658816.2015.1034721

Published online: 23 Apr 2015.

Submit your article to this journal 

Article views: 440

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2015.1034721
http://dx.doi.org/10.1080/13658816.2015.1034721
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2015.1034721
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2015.1034721
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2015.1034721&domain=pdf&date_stamp=2015-04-23
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2015.1034721&domain=pdf&date_stamp=2015-04-23


Simulating urban growth in a metropolitan area based on weighted
urban flows by using web search engine

Jinyao Lin and Xia Li*

School of Geography and Planning, and Guangdong Key Laboratory for Urbanization and
Geo-simulation, Sun Yat-sen University, Guangzhou, PR China

(Received 19 October 2014; final version received 23 March 2015)

As a consequence of rapid and immoderate urbanization, simulating urban growth in
metropolitan areas effectively becomes a crucial and yet difficult task. Cellular auto-
mata (CA) model is an attractive tool for understanding complex geographical phe-
nomena. Although intercity urban flows, the key factors in metropolitan development,
have already been taken into consideration in CA models, there is still room for
improvement because the influences of urban flows may not necessarily follow the
distance decay relationship and may change over time. A feasible solution is to define
the weights of intercity urban flows. Therefore, this study presents a novel method
based on weighted urban flows (CAWeightedFlow) with the support of web search engine.
The relatedness measured by the co-occurrences of the cities’ names (toponyms) on
massive web pages can be deemed as the weights of intercity urban flows. After
applying the weights, the gravitational field model is integrated with Logistic-CA to
fulfill the modeling task. This method is employed to the urban growth simulation in
the Pearl River Delta, one of the most urbanized metropolitan areas in China, from
2005 to 2008. The results indicate that our method outperforms traditional methods
with respect to two measures of calibration goodness-of-fit. For example,
CAWeightedFlow can yield the best value of ‘figure of merit’. Moreover, the proposed
method can be further used to explore various development possibilities by simply
changing the weights.

Keywords: weighted urban flow; web search engine; gravitational field model;
cellular automata; calibration

1. Introduction

Rapid urbanization has become an increasingly serious issue in developing countries, such
as China (Cohen 2004, Grimm et al. 2008). Substantial economic development occurs in
China at the expense of severe environmental and ecological problems since the adoption
of the reform and opening-up policy in 1978, especially the country’s three major
metropolitan regions (i.e., the Pearl River Delta, the Yangtze River Delta, and the
Beijing–Tianjin–Hebei region) (Liu et al. 2005, Tan et al. 2005). For example, the Pearl
River Delta region contributed 9.2% of the gross domestic product (GDP) of the whole
nation in 2012 (National Bureau of Statistics of China 2013), but has long been suffering
from agricultural land loss (Yeh and Li 1999, Weng 2002), wetland loss (Li et al. 2006),
environmental pollution (Fu et al. 2003, Zhang et al. 2011), etc. As a consequence, it is a
crucial and meaningful task to better understand the spatio-temporal processes of urban
growth in those large areas.
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Cellular automata (CA) model is competent for the task and therefore has proliferated
in modeling land-use and land-cover changes over the past two decades (Couclelis 1997,
White et al. 1997, Batty et al. 1999, Verburg et al. 2004, He et al. 2006, Liu et al. 2008).
Despite the fact that various CA models are still being continuously developed, most of
which are suitable only for analyzing a single city (Li and Liu 2006). Such models are
incapable of large-scale urban growth simulation because they mainly focus on the
neighborhood functions (Santé et al. 2010). That is to say, they seldom examine distant
influences among the cities within a metropolitan area. It is unreasonable to treat each city
independently because metropolitan cooperation plays a growing role in regional devel-
opment (Heeg et al. 2003, Luo and Shen 2009). To deal with this problem, intercity urban
flows should be taken into account.

The term ‘urban flow’ is defined as the bidirectional or multidirectional interchanges
of population, goods, information, capital, and technologies in a metropolitan area (Zhu
and Yu 2002, Seto et al. 2012). Much effort has been made to analyze the influences of
urban flows (e.g., Zhu and Yu 2002, Jiang et al. 2008). However, the application of urban
flow factors in CA models is still rarely investigated. Until recently, He et al. (2013) tried
to incorporate gravitational field model (GFM) with CA to simulate urban growth in the
Beijing–Tianjin–Tangshan metropolitan area. The GFM was used to reflect the influence
of intercity urban flows. They found that traditional CA models tend to overestimate the
roles of neighborhood effect, and thus their proposed method can generate more accurate
simulation results (He et al. 2013). Although this method considers urban flow factors in
large-scale urban growth simulation, some drawbacks still remain unsolved. For example,
the influences of urban flows from some cities on their neighboring cities may not
necessarily follow the distance decay relationship (Fotheringham 1981, Tiefelsdorf
2003) and may change over time. It is because the interaction between the cities will
differ due to various development policies and/or different time periods, etc. As inspired
by the theory of weighted network (Batty 2013, Barrat et al. 2004, Newman 2004), a
feasible solution is to define the weights of the influences of urban flows between every
two cities.

However, quantifying proper weights for the relationships in complex city networks
remains a tough challenge. Some researchers tried to estimate the relatedness between
some cities based on big data, such as air passenger flow data (Xiao et al. 2013), mobile
phone data (Phithakkitnukoon et al. 2010), and social media check-in data (Liu et al.
2014b). Unfortunately, those kinds of data are usually unavailable or costly for public use.
Moreover, they also have their own limitations, social networking sites are more popular
among young people for example (Correa et al. 2010).

Interestingly, a large body of literature indicates that geographical knowledge and infor-
mation can be extracted from theWorld WideWeb, another important source of big data, with
low cost (Buyukokkten et al. 1999, Jones et al. 2008, Shi and Barker 2011). Web search
engine is such a tool that is designed to search for web information according to user-specified
keywords. A notable example is Google Flu Trends, a web service to detect influenza
epidemics based on search engine query data (Ginsberg et al. 2009). As a consequence, by
using web search engine, Liu et al. (2014c) proposed an easy alternative to measure the
relatedness between geographical entities from massive web pages. They simply recorded the
numbers of web documents that contain both the place names (toponyms) of two entities and
found that a high number of co-occurrences of toponyms in web documents indicate a strong
relatedness between the places. In fact, the analysis of toponyms, which has long been applied
in geographical information retrieval (Goodchild and Hill 2008), can discover geographical
landscapes and processes (Luo et al. 2010). Obviously, the relatedness revealed by toponym
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co-occurrences can be deemed as the weights of the influences of urban flows (i.e., weighted
urban flows) between every two cities. Therefore, by combining previous works of He et al.
(2013) and Liu et al. (2014c), this study proposes a novel method (CAWeightedFlow hereafter) to
simulate urban growth in a metropolitan area based on weighted urban flows with the support
of web search engine. What role can big data play in large-scale urban growth simulation? We
will shed some light on this question in the era of big data.

2. Methodology

The urban outflows of the cities were first calculated based on the socioeconomic data.
Second, we measured the relatedness between every two cities by using web search engine.
A higher relatedness between the cities implies a higher weight of the influences of urban
flows between them. The necessity for defining the weights is illustrated in Figure 1. After
applying the weights, the influences of urban flows from the cities were reflected by the
gravitational field model. Finally, the commonly used Logistic-CA model was employed to
simulate urban growth in a metropolitan area based on those weighted urban flow factors.
This study focuses on only the transition from non-urban to urban areas and assumes zero
loss of urban. The succeeding subsections provide more details about the procedures.

2.1. Urban flow

Drawing on the concepts from Newton’s law of universal gravitation (Verlinde 2011), the
influence of urban flows from city i on the cell (x, y) can be approximately represented as
follows (Liang 2009):

Ui;x;y ¼ Fi

D x; y; xi; yið Þ (1)

Figure 1. The necessity for defining the weights of intercity urban flows.
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where Ui;x;y is the urban flow intensity from city i to the cell (x, y), D x; y; xi; yið Þ is the
Euclidean distance from city i’s center (xi, yi) to the cell (x, y), and Fi is the urban outflow
of city i (Zhu and Yu 2002, He et al. 2013):

Fi ¼ Ni � Ei (2)

where Ni is the internal function for city i, which can be well represented by the city’s
GDP per employee; Ei is the external function for city i, which can be calculated using the
equation given by:

Ei ¼
Xm
k¼1

Eik (3)

where m is the number of outward-looking economic sectors, and Eik is the output
function of sector k of city i:

Eik ¼ Gik � Gi � Gk

G
(4)

where Gik is the number of employees in sector k of city i, Gi is the number of employees
in all the relevant sectors of city i, Gk is the number of employees in sector k of all the
cities, and G is the number of employees in all the relevant sectors of all the cities. If
Eik ≤ 0, it means that no output function can be derived from the economic sector k of city
i, and Eik will therefore be set to 0. Otherwise, the corresponding sector has an output
function to support other cities (He et al. 2013).

He et al. (2013) suggested that urban flow factors for urban growth simulation can be
estimated from Equation (1). However, we argue that it may be somewhat unreasonable to
do so due to the complexity of city networks. To better quantify the urban flow intensity,
the relatedness between the cities should be taken into consideration. The component of
the relatedness for the urban flows is discussed in the following subsection.

2.2. Relatedness between geographical entities

The relatedness between two geographical entities can be easily measured by the co-
occurrences of their names (toponyms) on massive web pages, specifically in news
reports. The basic assumption lies behind this method is that a high number of co-
occurrences of toponyms indicate a strong relatedness between the places (Liu et al.
2014c). After retrieving the co-occurrence data by using web search engine, the related-
ness between every two cities (Rij) can be standardized as follows:

Rij ¼ Cijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cii � Cjj

p (5)

where Cij is the number of co-occurrences of cities i and j, and Cii (or Cjj) is the number of
web pages retrieved using only one city’s name i (or j).

The relatedness between the cities will be considered as the weights of the influences
of urban flows. To be more exact, Equation (1) should be updated as follows:
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Ui;j;x;y ¼ Fi

Dj x; y; xi; yið Þ � Rij (6)

where Ui;j;x;y is the weighted urban flow intensity from city i to the cell (x, y) within city j,
Dj x; y; xi; yið Þ is the Euclidean distance from city i’s center (xi, yi) to the cell (x, y) within
city j, and Fi is the same as the one in Equation (1). It is also feasible if Rij is measured by
other big data-based methods mentioned in Section 1.

Subsequently, the urban flow factors generated through the above equation can be
served as a major component for calibrating large-scale CA models. More detailed
techniques will be presented in the following subsection.

2.3. The framework of CAweightedflow

In this study, we only calibrated the CA models from two time points. The Logistic-CA
model is selected to implement the simulation task because of its popularity and effec-
tiveness (Wu 2002). Many improvements of the CA are based on this widely used model
for simulating urban development and land-use changes. The methodology is the same if
other types of CA are used. In Logistic-CA, the development potential of a non-urbanized
cell is represented by using a logistic function (Li et al. 2013):

pij S ¼ Developedð Þ ¼ expðzijÞ
1þ expðzijÞ ¼

1

1þ expð�zijÞ (7)

where pij is the potential of being in a developed state for cell ij, S is the state (developed
or not), and zij is calculated based on a series of driving forces related to urban dynamics:

zij ¼ aþ
X
k

bkSk þ
X
m

cmUm; for each cell ij (8)

where a is a constant, Sk is the kth spatial variable (e.g., distance to the city centers or road
networks), Um is the mth urban flow factor (generated through Equation (6)), and bk, cm
are the corresponding parameters of Sk, Um, respectively. These parameters can be
obtained through logistic regression. The only difference between the common CA
model and our proposed method is the selection of driving forces. That is to say, the
former only considers proximity variables (i.e., zij ¼ aþP

k
bkSk), while the latter also

includes intercity urban flow factors (
P
m
cmUm) simultaneously.

Moreover, the influences of stochastic factor, neighborhood effect, and geographical
constraints should be incorporated in Equation (7). The new equation is given by:

ptij ¼ 1þ � ln γð Þαð Þ � 1

1þ expð�zijÞ � Ωt
ij � conij (9)

where ptij is the probability of being in a developed state at time t for cell ij, γ is a

stochastic factor ranging from 0 to 1, α is a parameter for controlling the stochastic degree,
Ωt

ij is the development density in a 3 × 3 Moore neighborhood of cell ij at time t, and conij
is a constraint score for cell ij ranging from 0 to 1 (e.g., if a cell belongs to water areas, the
score should be set to 0).
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Subsequently, ptij was compared with a threshold value to decide whether a non-
urbanized cell should be developed to an urbanized cell during the iterations. The
equation is given as follows:

Stþ1
ij ¼ Developed; ptij � pthreshold

NonDeveloped; ptij < pthreshold

�
(10)

where Stþ1
ij is the state of the cell ij at time (t + 1), and pthreshold is a threshold value

determined by the total number of urbanized cells derived from the last observed (2008 in
this study) Landsat Thematic Mapper (TM) images. However, the quantity of simulated
change is unfixed because the number of converted cells is not bounded at each iteration.
The iterations will stop once the quantity of simulated change exceeds the quantity of
observed change.

Finally, we used the indicator of ‘figure of merit’ (FoM) to evaluate the performance
of the simulation results. FoM can be calculated as follows (Pontius et al. 2008):

Figure of merit ¼ Hits = ðMissesþ Hitsþ False AlarmsÞ � 100% (11)

where Misses are errors caused by observed urban gain simulated as non-urban persis-
tence, Hits are agreements brought about by observed urban gain simulated as urban gain,
and False Alarms are errors caused by observed non-urban persistence simulated as urban
gain.

3. Implementation and results

3.1. Study area and spatial data

As shown in Figure 2, the Pearl River Delta (PRD) region is located in the central part of
Guangdong Province, China. This fast-growing region includes nine administrative cities
with a total area of approximately 55,000 km2. The region has been experiencing rapid
urbanization since the implementation of reform and opening-up policy in 1978. These
tremendous land-use changes have given rise to a series of environmental and ecological
problems (Yeh and Li 1999, Weng 2002, Fu et al. 2003, Zhang et al. 2011). Simulating
urban growth in PRD is an urgent and meaningful endeavor.

After being rescaled to a spatial resolution of 150 m, the classified Landsat TM images
in 2005 and 2008 were used to calibrate the CA model in this study. In addition, as
presented in Figure 3, several spatial variables related to urban dynamics (S in Equation
(8)) were also necessary for the calibration. These variables included the distances to the
railways, highways, roads, city centers, and town centers, all of which were normalized
into the range [0, 1]. The year of them is 2008, the end date of the calibration time period
(Conway and Wellen 2011).

3.2. Implementation

First, the co-occurrence data were collected manually by using Baidu news search engine
(http://news.baidu.com/) on 28 May 2014. Our search was restricted to the news from
SINA Corporation (http://www.sina.com.cn), a leading media website serving China and
the global Chinese communities, in accordance with related study (Liu et al. 2014c). We
recorded the numbers of web pages that contain both the toponyms of each pair (every
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Figure 2. Location of the study area.

Figure 3. Various spatial variables related to urban dynamics in PRD: (a) distance to the railways,
(b) distance to the highways, (c) distance to the roads, (d) distance to the city centers, and (e)
distance to the town centers.
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two cities) from 2005 to 2008. Subsequently, the relatedness (weights) between the cities
can be calculated according to Equation (5). The results are listed in Table 1.

Second, all the required statistical data were obtained from the Statistics Bureau of
Guangdong Province. The numbers of employees from eight different outward-looking
economic sectors related to intercity linkages were used to calculate the urban outflows
(F in Equation (6)) of all the cities (Zhu and Yu 2002). These sectors are (1) Transport,
storage, and postal services; (2) Wholesale and retail; (3) Finance; (4) Real estate; (5)
Health care and social welfare; (6) Education and culture; (7) Scientific research and
technical services; and (8) Manufacture. The calculation results are shown in Table 2.

After multiplying by the weights, the urban flow intensity from each city can be
calculated according to Equation (6). The nine cities in PRD were classified into four
levels according to their socioeconomic characteristics (i.e., GDP and population) (He
et al. 2013): (1) Guangzhou, (2) Shenzhen, (3) Dongguan and Foshan, (4) Zhuhai,
Zhongshan, Huizhou, Jiangmen, and Zhaoqing. When a cell is influenced by the urban
flows from different cities within the same level, the maximum value is accounted (Wang
et al. 2011). The final flow values from the four levels were then normalized into the
range [0, 1]. These urban flow factors were deemed as the additional driving forces (U in
Equation (8)). In addition, we also generated the original urban flow factors (without the
weights) proposed by He et al. (2013), which were calculated based on Equation (1), for
comparison. The results are displayed in Figure 4. It is found that our results are more
reasonable than the traditional ones. For example, Foshan and Dongguan are on the west
and east of Guangzhou, respectively. However, Guangzhou should exert more influence
on Foshan than Dongguan because of the ‘Guangzhou-Foshan City Integration’ strategy.
This phenomenon is consistent with the numbers of toponym co-occurrences in web
documents.

Table 1. Toponym co-occurrences and relatedness between every two cities in PRD.

GZ SZ ZH DG FS ZS HZ JM ZQ

GZ 4490 168 6.03 47.5 92.5 62.9 2.99 1.63 1.92
SZ 0.0405 3840 6.37 67 3.95 2.56 5.88 0.47 0.64
ZH 0.0020 0.0023 2040 1.78 3.74 6.63 2.68 3.47 1.33
DG 0.0207 0.0316 0.0012 1170 3.55 2.42 5.09 0.54 1.09
FS 0.0361 0.0017 0.0022 0.0027 1460 3.64 2.21 4.14 1.98
ZS 0.0250 0.0011 0.0039 0.0019 0.0025 1410 1.13 2.62 0.45
HZ 0.0015 0.0032 0.0020 0.0051 0.0020 0.0010 866 3.33 2.71
JM 0.0011 0.0003 0.0034 0.0007 0.0047 0.0030 0.0049 524 3.31
ZQ 0.0014 0.0005 0.0015 0.0016 0.0026 0.0006 0.0045 0.0071 411

Notes: The values in the upper triangular matrix are the numbers of toponym co-occurrences in hundreds; the
values in the diagonal entries are the numbers of web pages retrieved using only one city’s name in hundreds;
and the values in the lower triangular matrix are the relatedness of each pair.
Abbreviations (the same below): GZ – Guangzhou, SZ – Shenzhen, ZH – Zhuhai, DG – Dongguan, FS –
Foshan, ZS – Zhongshan, HZ – Huizhou, JM – Jiangmen, ZQ – Zhaoqing.

Table 2. The urban outflows (F) of the cities.

GZ SZ ZH DG FS ZS HZ JM ZQ

F 562.87 366.03 122.62 518.59 239.80 101.28 182.42 79.94 73.70
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Finally, we also constructed the model proposed by He et al. (2013) (CAFlow here-
after), and the traditional Logistic-CA model (CALogistic hereafter) for comparison. The
latter one does not take urban flows into consideration. Both 1000 samples of urban land
and 1000 samples of non-urban land were randomly collected from the observed Landsat
TM images. All the CA models in this study were calibrated by using the same set of
training samples for consistency. Next, logistic regression was used to obtain the para-
meters (a, bk and cm in Equation (8)) of the input driving forces. The results of the three
methods are listed in Table 3. The development probability of the non-urbanized cells can
then be calculated according to Equation (9). In order to reduce uncertainties brought

Figure 4. The urban flow intensity (U) from (1) Guangzhou, (2) Shenzhen, (3) Dongguan and
Foshan, (4) Zhuhai, Zhongshan, Huizhou, Jiangmen, and Zhaoqing: (a) weighted urban flows and
(b) unweighted urban flows.

Table 3. The parameters of CAWeightedFlow, CAFlow, and CALogistic.

CAWeightedFlow a bTownCenter bCityCenter bHighway bRailway

1.578 −2.238 −3.988 −2.983 0.492
bRoad cFlow1 cFlow2 cFlow3 cFlow4
−8.358 28.375 358.416 368.223 212.893

CAFlow a bTownCenter bCityCenter bHighway bRailway

0.561 −2.038 −3.199 −2.135 0.327
bRoad cFlow1 cFlow2 cFlow3 cFlow4
−8.553 94.542 576.091 292.055 182.168

CALogistic a bTownCenter bCityCenter bHighway bRailway bRoad

2.993 0.158 −7.025 −5.158 −0.504 −8.760

Notes: a is a constant, cFlow1–4 denote the respective urban flow factors derived from city level (1)–(4), and the
rest denote the corresponding proximity variables.
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about by the stochastic factor, we repeated all the CA models 10 times. The average of the
10 repeated runs was considered as the final result, which will be assessed by comparing
with the observed map of urban growth during 2005–2008 (Liu et al. 2014a).

3.3. Results

The performance of the three methods (CAWeightedFlow, CAFlow, and CALogistic) will be
examined by two measures of calibration goodness-of-fit (Pontius and Pacheco 2004):
cell-based accuracy (i.e., FoM) and the city’s proportion of urban change to the total. The
former is calculated through Equation (11), while the latter is measured as follows:

Pi ¼ Qi

Q
� 100% (12)

where Pi denotes city i’s proportion of urban change to the total, Qi is the quantity (area)
of observed (or simulated) urban change of city i, and Q is the quantity of total observed
(or simulated) urban change in the whole study area. Note that Q may slightly differ in
different simulation results. We computed Pi for the reference maps and for each of the
three model outputs, respectively.

Figure 5 displays the urban gain during 2005–2008 by focusing on a fast growing
(Dongguan) and a slowly growing city (Jiangmen), and Figure 6 presents the visual
comparison among the three simulation results. In general, the major fast growing cities
account for most of the urban growth in a metropolitan area. However, the newly
urbanized cells generated by the traditional Logistic-CA model were almost evenly
distributed around preexisting urban patches (e.g., Figure 5c1 and c2). Instead, most of
the newly urbanized cells of CAWeightedFlow and CAFlow were distributed around several
big cities (e.g., Figure 5a1 and a2). Subsequently, the indicator of FoM was used to
quantify their performance. A box and whisker plot of FoM values among the 10 runs for
each model is shown in Figure 7, while the FoMs of the average results are displayed in

Figure 5. Urban change derived from the three simulation results and reference maps during 2005–
2008: (1) Dongguan and (2) Jiangmen.
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Figure 8 (the FoM values in Figure 8 are greater than the individual ones in Figure 7
because the value of False Alarms in Equation (11) (partially caused by the stochastic
factor) will decrease after averaging). It is found that CAWeightedFlow outperforms the
other two.

We further focused on the top three fast-growing cities in PRD, namely Dongguan,
Guangzhou, and Foshan, since these cities are more likely to be affected by severe

Figure 6. Visual comparison among the three simulation results of PRD: (a) CAWeightedFlow, (b)
CAFlow, and (c) CALogistic.

Figure 7. Box and whisker plot of FoM values among the 10 runs for each model.
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environmental and ecological problems. The total quantity of urban gain in PRD during
2005–2008 is 25,267 cells (equivalent to 568.51 km2). As summarized in Table 4, these
three cities account for 62.84% of the total growth. While CALogistic is still the worst
performing method, CAFlow can yield a much closer value (62.26%). However, its
respective proportions are quite different from those of the observed images. By contrast,
CAWeightedFlow can generate more similar results than the other two models in terms of the
average error.

Average error ¼ 1

n

Xn
i¼1

Simulatedi � Observedi
Observedi

����
����� 100% (13)

where n is the number of attributes, Simulatedi denotes attribute i’s value calculated from
the model output, and Observedi denotes attribute i’s value calculated from the observed
images.

Figure 8. FoM derived from the average simulation result for each model. The unit of the
horizontal axis is the percent of non-urban land at 2005.

Table 4. The proportion of urban change to the total (Pi) of the top three fast-growing cities in
PRD during 2005–2008.

City Model DG GZ FS DG + GZ + FS Average error

Observed 26.61% (1) 19.31% (2) 16.92% (3) 62.84% 0.00%
CAWeightedFlow 23.93% (1) 22.36% (2) 14.80% (3) 61.09% 10.30%
CAFlow 22.60% (2) 24.55% (1) 15.11% (3) 62.26% 13.46%
CALogistic 20.24% (2) 21.30% (1) 14.57% (3) 56.11% 14.71%

Note: The number in brackets denotes the city’s growth ranking.
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In addition, Dongguan’s and Guangzhou’s Pi ranked first and second among the cities
in PRD, respectively. But this observation can only be well reflected by CAWeightedFlow.

3.4. Discussion

Based on the above experiments, we can conclude that the proposed method
(CAWeightedFlow) can yield the best simulation results, despite the fact that it only shows
slight improvement over CAFlow with respect to FoM. But more importantly,
CAWeightedFlow can better characterize the complex processes of urban growth in major
fast-growing cities in terms of the cities’ proportions of urban change to the total. It is
because the urban flow intensity for each city can be quantified more reasonably when
taking into account the relatedness between the cities. Various big data-based methods
have been developed to quantify relatedness between different regions, the calibration of
large-scale urban CA models could benefit from those achievements.

In addition, the web search results can be restricted to a certain time period to better
reflect the complex relationships at different stages of development. Finally, scenario
analysis can be further conducted to predict future urban growth. For example, if the
interaction between any two cities is to be strengthened or weakened, we can see what
will happen by simply increasing or decreasing the corresponding weights. The results
might contribute to urban planning in large areas. It may be difficult to explore these
various possibilities without considering the weights between the cities.

4. Conclusions

Although intercity urban flows play an increasingly important role in urban growth in
metropolitan areas, most of the CA models developed so far rarely take them into account.
Recently, He et al. (2013) attempted to include urban flow factors by integrating gravita-
tional field model with CA. However, the influences of urban flows may not strictly
adhere to the distance decay relationship and may change over time. As a solution, this
study has demonstrated that the aforementioned problems can be alleviated by defining
the weights of the influences of intercity urban flows with the support of web search
engine. We can easily measure the relatedness between the cities by a count of toponym
co-occurrences in massive web documents. A higher number of co-occurrences indicates a
higher relatedness (weight) and, consequently, stronger interaction between these two
cities. The gravitational field model was then used to reflect the influence of intercity
urban flows. Based on the co-occurrence data, our novel method can generate more
reasonable urban flow factors than traditional method. These urban flow factors were
deemed as the additional driving forces used in CA models (Table 3). Other procedures
were the same as those of the common Logistic-CA models.

The proposed method (CAWeightedFlow) was used to simulate urban growth in the Pearl
River Delta region, one of the most urbanized metropolitan areas in southern China, from
2005 to 2008. The comparisons indicate that the results are slightly better than those
obtained from two traditional CA models (i.e., CAFlow and CALogistic), in terms of two
evaluation metrics, namely cell-based accuracy (Figures 7–8) and the city’s proportion of
urban change to the total (Table 4). CAWeightedFlow can yield the best value of FoM and can
better characterize the complex processes of urban growth in major fast-growing cities.
Compared with traditional methods, our method may be more suitable and reasonable for
calibrating large-scale urban CA models, in which big data play a key role. Nevertheless,
further studies are still under way to overcome its remaining drawbacks. For example, it
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may be unsuitable to apply the same set of transition rules for all the cities owing to
heterogeneous geographical features. We will take knowledge transfer techniques into
consideration.
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